Local Coverage Determination (LCD):
MolDX: 4Kscore Assay (L36763)

Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website.

Contractor Information

<table>
<thead>
<tr>
<th>Contractor Name</th>
<th>Contract Type</th>
<th>Contract Number</th>
<th>Jurisdiction</th>
<th>State(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmetto GBA</td>
<td>A and B MAC</td>
<td>10111 - MAC A</td>
<td>J - J</td>
<td>Alabama</td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B MAC</td>
<td>10112 - MAC B</td>
<td>J - J</td>
<td>Alabama</td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B MAC</td>
<td>10211 - MAC A</td>
<td>J - J</td>
<td>Georgia</td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B MAC</td>
<td>10212 - MAC B</td>
<td>J - J</td>
<td>Georgia</td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B MAC</td>
<td>10311 - MAC A</td>
<td>J - J</td>
<td>Tennessee</td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B MAC</td>
<td>10312 - MAC B</td>
<td>J - J</td>
<td>Tennessee</td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11201</td>
<td>J - M</td>
<td>South Carolina</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11202</td>
<td>J - M</td>
<td>South Carolina</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11301</td>
<td>J - M</td>
<td>Virginia</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11302</td>
<td>J - M</td>
<td>Virginia</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11401</td>
<td>J - M</td>
<td>West Virginia</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11402</td>
<td>J - M</td>
<td>West Virginia</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11501</td>
<td>J - M</td>
<td>North Carolina</td>
<td></td>
</tr>
<tr>
<td>Palmetto GBA</td>
<td>A and B and HHH MAC 11502</td>
<td>J - M</td>
<td>North Carolina</td>
<td></td>
</tr>
</tbody>
</table>

Back to Top

LCD Information

Document Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD ID</td>
<td>L36763</td>
</tr>
<tr>
<td>Original Effective Date</td>
<td>For services performed on or after 11/21/2016</td>
</tr>
<tr>
<td>Revision Effective Date</td>
<td>For services performed on or after 02/26/2018</td>
</tr>
<tr>
<td>Revision Ending Date</td>
<td>N/A</td>
</tr>
<tr>
<td>Retirement Date</td>
<td>N/A</td>
</tr>
<tr>
<td>Notice Period Start Date</td>
<td>10/06/2016</td>
</tr>
<tr>
<td>Notice Period End Date</td>
<td>11/20/2016</td>
</tr>
</tbody>
</table>

AMA CPT / ADA CDT / AHA NUBC Copyright Statement

CPT only copyright 2002-2018 American Medical Association. All Rights Reserved. CPT is a registered trademark of the American Medical Association. Applicable FARS/DFARS Apply to Government Use. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein.

Printed on 7/12/2018. Page 1 of 7
Coverage Guidance

Coverage Indications, Limitations, and/or Medical Necessity

This is a non-coverage policy for the 4Kscore assay (developed by OPKO; marketed by BioReference Laboratory, NJ). This test is a laboratory developed test (LDT) and has not undergone FDA review or scrutiny. Review of the available evidence is summarized below.

The 4Kscore test consists of a panel of four kallikreins in blood that is supposed to reduce unnecessary biopsy in men being considered for biopsy of the prostate for potential cancer. The clinical features of this group are poorly defined. The kallikreins consist of total PSA, free PSA, intact PSA and kallikrein-related peptidase 2 (hK2). The authors of the training and validation study\(^1\) claim that the panel of kallikrein markers can predict high grade prostate cancer on a prostate biopsy in previously unscreened men with elevated PSA. They also claim to have replicated their previous findings where they claim that application of a statistical model incorporating all four kallikreins leads to superior clinical results compared with the current strategy of biopsying all men with elevated PSA. These data suggest that the number of men undergoing biopsy could be reduced to half using 20% or greater risk of any cancer as a tentative threshold for biopsy, with approximately 20% of cancers remaining undetected among previously unscreened men. However, most of these cancers would be low-grade and low-stage cancers typically associated with over diagnosis, while few high-grade cancers would be missed. They claim "a large number of unnecessary biopsies can be avoided at the expense of only a small number of men with advanced cancer being advised against biopsy, few of whom would have high-stage or high-grade disease. Accordingly, application of our model as part of PSA screening would reduce the harms associated with unnecessary biopsy".

Despite the claims offered by these authors, their study is significantly flawed. Their model includes patients outside of the intended use population (PSA > 10 ng/mL) and patients who previously were biopsied with no cancer discovered. Furthermore, in their iteration of the formula it is unclear how much hK2 contributes above using all the other components which are commercially available. Total PSA contribution is very significant.
AUC of the full model is 0.821, and without the incorporation of the hK2 the AUC is 0.806 with overlapping confidence intervals. Throughout the studies there is 1) inconsistent use of PSA as a threshold for biopsy; 2) significant changes to the methodology (use of F(ab')2 fragments of the monoclonal capture antibodies); and 3) modification of the algorithm. Furthermore, earlier data was generated on (usually) a 6 core sextant biopsy and likely does not reflect the tissue volume assessed in American men.

In a Swedish case-control study nested within a population-based cohort, the four kallikreins were combined into a statistical risk model based on the Vickers validation that gives risk of any grade (or Gleason score=6) cancer at prostate biopsy. More than 12,500 men were followed for >15 years. PSA testing, performed on cryopreserved blood collected at age 50 or 60, was used to predict metastasis at 15-20 yr follow-up. In the subset of men with modestly elevated PSA, a pre-specified model based on a panel of four KLK markers increased the predictive discrimination of developing clinically diagnoasable prostate cancer. Among men with moderately elevated PSA at age 50 or 60, the authors claim the four KLK (4Kscore assay) panel yielded C-indexes from 0.82 to 0.88 for the prediction of documented distant metastasis. The authors conclude that screening at ages 50-60 years should focus on men with PSA in the top quartile, and use the kallikrein panel to aid biopsy decision making.

In a retrospective study by Bryant, et al., involving cryopreserved blood from >6000 men in a large randomized prospective clinical trial involving contemporary extended 10-core biopsies, the four kallikreins were used to demonstrate prediction improvement of biopsy outcomes compared with total PSA and age. Because the previous statistical models were based on the kallikrein levels measured in serum for previously unscreened men undergoing sextant prostate biopsy, and because levels of some of the kallikrein markers differ in plasma vs serum, new prediction models were generated in this study and reported new AUCs. The authors also used decision curve analysis to investigate whether the models could reduce the number of men undergoing biopsy without delaying the diagnosis of high-grade disease in many men. They claim that using a 6% risk of high-grade cancer as an illustrative cutoff, for 1000 biopsied men with PSA levels of 3.0ng/mL or higher, the model would reduce the need for biopsy in 428 men, detect 119 high-grade cancers, and delay diagnosis of 14 of 133 high-grade cancers. They claim that the 4 kallikrein assay can predict the result of the prostate biopsy, and differentially detect high-grade disease. However, the new AUC confidence levels of the model with or without hK2 overlap, and men with PSA = 10 ng/mL were included. Furthermore, the model used total PSA and free PSA (did not use intact PSA) with a free to total PSA ratio. These components can easily be calculated, and require no need for expensive testing.

The Bryant study highlights a turning point with the development of a new model/algorithm in response to changes in biopsy and grading practices, and was subsequently locked down and applied to the Swedish community study, the Stattin long-term follow-up study and the Parekh validation study. Furthermore, the Bryant
authors have not proven the validation of the assay, and admit their findings need to be confirmed in prospective research using clinical cohorts.

Finally, Konety, et al.5 is marketed as a prospective decision impact study. In this study, 611 patients seen by 35 academic and community urologists in the US ordered the 4Kscore tests as part of their assessment of men referred for abnormal PSA and/or DRE. The authors report that the "results for the patients were stratified into low risk (< 7.5%), intermediate risk (7.5%-19.9%), and high risk (20%) for aggressive prostate cancer. The 4Kscore Test results influenced biopsy decisions in 88.7% of the men. Performing the 4Kscore Test resulted in a 64.6% reduction in prostate biopsies in patients; the actual percentage of cases not proceeding to biopsy were 94.0%, 52.9%, and 19.0% for men who had low-, intermediate-, and high-risk 4Kscore Test results, respectively. A higher 4Kscore Test was associated with greater likelihood of having a prostate biopsy (p < 0.001). Among the 171 patients who had a biopsy, the 4Kscore risk category is strongly associated with biopsy pathology. The 4Kscore Test, as a follow-up test for an abnormal PSA and/or DRE results, significantly influenced the physician and patient shared decision in clinical practice, which led to a reduction in prostate biopsies while increasing the probability of detecting aggressive cancer.”

The Konety, et al. study, although marketed as a prospective study, is not a prospective study. A prospective clinical utility study requires prospective enrollment of patients, treatment according to a defined pathway using the test result as an integral part of the care plan, and must demonstrate statistically and clinically significant improvement in healthcare outcomes versus the currently accepted standard of care by contemporary controls. However, in the methods section of this article, the authors specify that the study was “retrospective”, and "no restrictions were placed on the urologists in deciding which patients received the 4Kscore test or in making decisions with the patient about whether to proceed with prostate biopsy". At best, this study represents a retrospective observational study or survey.

Finally, there is this assumption that missing an NCCN low risk patient will cause no harm. The only data for this is in men following biopsy documentation and subsequent active surveillance (AS). There is no evidence that observing a man with undiagnosed low risk prostate cancer and projected longevity would not suffer harm. There are no recommendations on suggested follow up if the 4Kscore suggests no indication for biopsy. There is an unproven statement that serial PSA will identify patients who may evolve and capture the missed high risk patients. Independent evidence suggests the main indication for cessation of AS is not PSA progression, but a worsening repeat biopsy.

In summary, the intended use population has been inadequately validated; the 4Kscore model has continuously changed; the model has been recurrently tested on potentially inappropriate patients (PSA > 10) and patients with inadequate biopsy sampling; it is unclear how much the hK2 and possibly intact PSA contribute to the model; the value of the 4Kscore model/algorithm is fraught with statistical hypothesis and not prospective outcomes or concordance in a defined patient population likely to be considered for biopsy (eg: PSA 3-10 ng/mL); assumptions are made that no harm will come to following young men with unknown low grade prostate cancer (not on AS); there is significant difficulty equating the model used in the Swedish study to the presently proposed formula; and the incidence of clinically diagnosable prostate cancer in patients with low risk by the model/algorithim at 10 years is very concerning.

Consequently, due to significant issues with assay validation and absence of clinical utility, 4Kscore testing is not reasonable and necessary and is not covered by Medicare.

Summary of Evidence

N/A

Analysis of Evidence
(Rationale for Determination)

N/A
Coding Information

Bill Type Codes:

Contractors may specify Bill Types to help providers identify those Bill Types typically used to report this service. Absence of a Bill Type does not guarantee that the policy does not apply to that Bill Type. Complete absence of all Bill Types indicates that coverage is not influenced by Bill Type and the policy should be assumed to apply equally to all claims.

0x TBD

Revenue Codes:

Contractors may specify Revenue Codes to help providers identify those Revenue Codes typically used to report this service. In most instances Revenue Codes are purely advisory. Unless specified in the policy, services reported under other Revenue Codes are equally subject to this coverage determination. Complete absence of all Revenue Codes indicates that coverage is not influenced by Revenue Code and the policy should be assumed to apply equally to all Revenue Codes.

N/A

CPT/HCPCS Codes

Group 1 Paragraph: N/A

Group 1 Codes:

ONCOLOGY (HIGH-GRADE PROSTATE CANCER), BIOCHEMICAL ASSAY OF FOUR PROTEINS (TOTAL PSA, 81539 FREE PSA, INTACT PSA, AND HUMAN KALLIKREIN-2 [HK2]), UTILIZING PLASMA OR SERUM, PROGNOSTIC ALGORITHM REPORTED AS A PROBABILITY SCORE

ICD-10 Codes that Support Medical Necessity

Group 1 Paragraph: N/A

Group 1 Codes:

ICD-10 Codes Description
XX000 Not Applicable

ICD-10 Codes that DO NOT Support Medical Necessity N/A

ICD-10 Additional Information Back to Top

General Information

Associated Information
N/A

Sources of Information

References:

Printed on 7/12/2018. Page 5 of 7
The Jurisdiction "J" Part B Contracts for Alabama (10112), Georgia (10212) and Tennessee (10312) are now being serviced by Palmetto GBA. The notice period for this LCD begins on 12/14/17 and ends on 02/25/18. Effective 02/26/18, these three contract numbers are being added to this LCD. No coverage, coding or other substantive changes (beyond the addition of the 3 Part B contract numbers) have been completed in this revision.

DATE (01/29/2018): The Jurisdiction "J" Part A Contracts for Alabama (10111), Georgia (10211) and Tennessee (10311) are now being serviced by Palmetto GBA. The notice period for this LCD begins on 12/14/17 and ends on 01/28/18. Effective 01/29/18, these three contract numbers are being added to this LCD. No coverage, coding or other substantive changes (beyond the addition of the 3 Part A contract numbers) have been completed in this revision.

Annual Validation.

DATE (09/18/2017): At this time 21st Century Cures Act will apply to new and revised LCDs that restrict coverage which requires comment and notice. This revision is not a restriction to the coverage determination; and, therefore not all the fields included on the LCD are applicable as noted in this policy.

1) Under CPT/HCPCS Codes; 0010M was deleted and 81539 added. This revision is due to the 2017 Annual CPT/HCPCS Code Update and becomes effective 1/1/17.

2) Corrected typographical errors(? 7.5%) to (< 7.5%), (P ? 0.001) to (p < 0.001) and added MolDX to LCD title.